
Enabling Tiled Displays for Education

Luc Renambot, Tom van der Schaaf
�renambot,tom�@cs.vu.nl

Faculty of Sciences - Vrije Universiteit
De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

1. Introduction

This document describes the interaction with the ICWall
tiled display built at the Vrije Universiteit, within a project
called MultiVLA. The display has been setup within an ed-
ucational environment and is used for several lectures from
computer science (graphics, parallel programming, AI),
physics, and chemistry. We describe a system consisting of
several free software components that allows novice users
to display their multimedia onto the tiled display. The user
interface is simple and requires no knowledge about the un-
derlying architecture, hiding the complex parallel rendering
system driving the display. Since the wall is also used for
research, the system allows for flexible switching between
desktop applications and virtual reality applications.

The key characteristics to choose a tiled display in a
education environment are among:

� Scalability: The size of the display is determined by
the number of projectors used. A small setup (around
8 projectors) can easily be used for medium-sized
groups (� 50 persons).

� Standard components: The setup can be realized using
commodity (off-the-shelf) components. This reduces
the price substantially.

� Resolution: The resolution of the screen is the sum of
the resolution of the individual projectors.

� Size: The large format allows a wide variety of differ-
ent applications. An advantage is the saturation of field
of view and the possibility for simultaneous projection
of different types of information.

All these characteristics make a video wall in princi-
pal more apt to be used in educational environments than
for instance a CAVE or a standard projector. Within the
academia, there is a growing interest for the development
and use of scalable displays as a complementary technique
to CAVE systems. The main issues are both the technical
and didactic aspects of hardware and software developed.
Interaction and collaboration greatly determine the success

of the project: interaction between the lecturer and the dis-
play, interaction with the students or the audience, local col-
laboration between the lecture room and our AccessGrid [1]
node, and collaboration with remote sites.

Figure 1. Overview of the classroom

The global view for the room of the tiled display is
given in Figure 1. The approach is that the room should
be as multi-functional as possible. In the current design,
several components are present, such as the large projection
screen, a plasma panel with touch screen (Smartboard), and
wireless network. The lecturer uses the touch screen as
interface for control and interaction of the tiled display. The
room is capable of seating about 50 people for a projection
area of roughly 5.0 by 2.5 meters. Sliding walls make a
reorganization of the room possible. Also, we plan to use
the room as an AccessGrid node (dedicated applications are
under development).

2. Interaction and User Interface

Our display will be used extensively for teaching pur-
poses, bridging the gap between the laboratory and the



classroom. Researchers are primarily interested in using
tiled displays for visualization of complex simulations or
high-resolution data. Teachers are more interested in show-
ing their presentations, movies, and websites. In order to
fulfill these different needs, the setup must meet several
requirements:

The system

� The hardware must appear as a single host with a sin-
gle (albeit very large) monitor. This implies that the
parallelism of the underlying graphics cluster needs to
be transparent.

� The system should support as many applications as
possible, from presentation and desktop tools to inter-
active 3D applications. Possibility to visualize stan-
dard file formats is an important demand from teachers
(for instance, VRML for 3D scene or PDB molecule
for protein visualization). Performance should be at
least comparable to a standard environment (single
PC), and hopefully better using the resources (comput-
ing and graphics) available on the driving cluster.

The user interface

� It should be possible to start programs with a sin-
gle mouse click (for instance, using a web interface).
Users should not require high-level computer skills to
run their programs.

� The human-computer interface should be open to ac-
cept a large variety of input to accommodate advanced
users or demanding applications (for instance, joy-
stick, PDA, tracking devices, speech system).

For the implementation of the above described environ-
ment, we made use of the following free software packages:

� Parallel Aura for the low level graphics driving the
cluster,

� Apache web server to host the user interface (java
applet) and documentation,

� VNC offering a remote display system for displaying
a large desktop. We use the following packages to
support popular media:

– OpenOffice for displaying presentations (for in-
stance, MS powerpoint),

– Acrobat Reader for displaying PDF documents,

– Mozilla for web browsing,

– Mplayer for showing movies in numerous file
formats.

� XML-RPC (in Java, C++ and Python) to serve as soft-
ware glue between all the different distributed compo-
nents.

Hiding the parallelism, is solved by using our 3D graph-
ics API called Aura [2, 4]. Aura transparently solves many
problems induced by a parallel graphics cluster, i.e. dis-
tributing graphics, geometrical alignment of the projectors,
as well as color and intensity adjustment of the projectors.
To provide a standard desktop within Aura, we use a virtual
display server called VNC [3]. A VNC server receives re-
quests from clients, upon which it returns screen updates of
the virtual desktop. Changes to the screen are compressed
and sent to the requesting client. Aura has a VNC client
module built in, that is optimized for parallel display. It
unpacks the incoming screen updates and places them into
a texture. The texture is displayed over the entire screen.
Since VNC supports both Windows and Linux, we are now
able to display any Windows or Linux application. An
important advantage of VNC is that it is not limited to any
physical constraints, and thus the desktop can be of any
size or bit depth. The downside of this approach is that
demanding applications, such as movies, can be slow.

File Server

VNC ServerAura Application
Server

Website + Applet

Display Wall

Desktop pixels

Loading command

Start presentationKey & Mouse events

Upload files

Figure 2. Interface and Interaction System

Apart from the technical perspective, there is the user
perspective. Not all users are experienced with Linux
command line, so a simple user interface should be pro-
vided. Therefore, our wall can be fully controlled from a
website, as shown in Figure 2. Teachers can upload their
presentations, movies, and datasets to their account via the
website. After the upload, their new file is immediately
available. Simply clicking on the file displays it on the
wall. To achieve this behavior, we use a combination of
two servers and a java client (Figure 3 shows a picture of
the java applet). To link these different components, all
communication is made through standard XML-RPC.



Figure 3. The java ICWall control applet

The first server is a file manager (written in Python). It
handles all file issues: uploading, starting programs in the
VNC desktop, and giving account info to the web client.

The second server is the Aura application server that will
show the output of the program. This server, upon request,
loads the dynamically loadable library matching the request
(e.g. a VNC desktop if the request is a Powerpoint presen-
tation, or the Aura image viewer if the request is an image).
The loaded library uses the parallel Aura API to provide
the requested functionality. Upon loading a new library, the
previous one is discarded. However, we plan to support
multiple libraries running concurrently for a better use of
the projection surface. Currently, we implemented several
libraries:

� An image viewer to display images over the whole
screen (jpg, gif, ...).

� An object viewer to display common 3D file types (obj,
nff, lwo, ...).

� A Linux VNC client to display all other media types.
We use OpenOffice, Mplayer, Mozilla and Acrobat
Reader to support most popular media (ppt, pdf, mpeg,
avi, ...). Figure 4 shows a lecturer using a desktop with
a powerpoint presentation and a movie.

� Several virtual reality applications, each implemented
as a separate library. Figure 5 shows the same lecturer,
demonstrating an interactive visualization of a tooth.

In the future, we will write more libraries. For example,
movies can be fairly slow using the VNC server (especially
high-resolution movies). We will write a separate movie
player for Aura that uses low-level features to improve per-
formance. Movie files can then be redirected to the new
library instead of the VNC desktop.

Figure 4. An actual lecture

Figure 5. A lecturer running a 3D visualization



The user can control the application using through the
website. Mouse moves and keyboard strokes are transmit-
ted to the application server and passed to the library to
interpret them. Experienced Linux users can use a local
VNC client (via the website), that allows full control, so that
they can start and control any Linux program themselves,
bypassing the website.

3. Conclusion

We built a user friendly interface to a tiled display wall,
that hides all technical details. We do not have enough
day-to-day experience with users to make a full usability
report yet, but the first lecturers to use it were very positive.
Starting in September, the tiled display will be used on a
daily basis by lecturers from different departments of the
University. This should give us the required feedback to
improve the system.

References

[1] L. Childers, T. Disz, B. Olson, and R. Stevens. Scalable high-
resolution wide area collaboration over the Access Grid. In
ACM, editor, SC2000: High Performance Networking and
Computing, pages 121–121, Nov. 2000.

[2] D. Germans, H. J. Spoelder, L. Renambot, and H. E. Bal.
VIRPI: A High-Level Toolkit for Interactive Scientific Vi-
sualization in Virtual Reality. In 5th Immersive Projection
Technology Workshop (IPT98), May 2001.

[3] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hop-
per. Virtual network computing. IEEE Internet Computing,
2(1):33–38, Jan. 1998.

[4] T. van der Schaaf, L. Renambot, D. Germans, H. Spoelder,
and H. Bal. Retained Mode Parallel Rendering for Scalable
Tiled Displays. In Proc. 6th annual Immersive Projection
Technology (IPT) Symposium, Orlando Florida, Mar. 2002.


